Michael addition of *N*-bonded enolato ligands to acrylonitrile in iron and ruthenium complexes[†]

Masafumi Hirano, Sayori Kiyota, Masataka Imoto and Sanshiro Komiya*

Department of Applied Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan. E-mail: komiya@cc.tuat.ac.jp

Received (in Cambridge, UK) 22nd May 2000, Accepted 26th July 2000

Treatment of the *N*-bonded enolatoiron(π) complex [M(H)(NCCHCO₂R)(L)₂] [1a, M = Fe, R = Me, L = depe {1,2-bis(diethylphosphino)ethane}; 1b, M = Fe, R = Et, L = depe; 2, M = Ru, L = dppe] with acrylonitrile results in mono-Michael addition to give [M(H)-{NCC(C₂H₄CN)CO₂R}(L)₂], which is found to be an active intermediate for the catalytic double-Michael reaction of cyanoacetate with acrylonitrile.

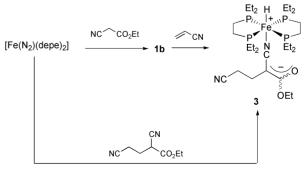
Transition-metal enolates have attracted considerable attention as key compounds in chemo-, regio- and stereospecific C–C bond forming reactions under neutral and mild conditions.¹ We previously reported the isolation of zwitterionic *N*-bonded enolate complexes of ruthenium² and rhenium³ as active intermediates in catalytic Michael and Knöevenagel reactions. In these catalyses enhanced nucleophilicity of the enolato moiety by the zwitterionic structure was considered to be responsible for the driving force of the chemoselective C–C bond formations. Here we report the isolation of the mono-Michael adducts of the enolato-iron and -ruthenium complexes to acrylonitrile as active intermediates for the Michael reaction. The role of these adducts in the catalytic double-Michael reaction of cyanoacetate with acrylonitrile is also described.

The enolatoiron(II) complexes $[Fe(H)(NCCHCO_2R)-(depe)_2]^{\dagger}$ (1a, R = Me; 1b, R = Et) were newly prepared by the oxidative addition of cyanoacetate to a dinitrogen complex of iron(0) $[Fe(N_2)(depe)_2]^4$ in 81 and 90% yields, respectively [eqn. (1)].

 $[Fe(N_2)(depe)_2] \xrightarrow{+ \text{ NCCH}_2CO_2R} [Fe(H)(\text{NCCHCO}_2R)(depe)_2] (1)$ 1a R = Me b R = Et

The molecular structure of **1b**⁵ revealed that the structure of the enolato ligand is similar to those in other isolated enolatoruthenium(II)² and -rhenium(I)³ complexes, showing its delocalised zwitterionic character as suggested by the planarity of the O(1)-C(3)-C(2)-C(1) linkage [dihedral angle = 177.4(5)°] and linear structure of Fe(1)–N(1)–C(1)–C(2) [bond angles Fe– N(1)–C(1) = 173.3(4)°, N(1)–C(1)–C(2) = 178.6(5)°].

The ¹H and ³¹P{¹H} NMR spectra of **1a** and **1b** indicate the presence of two isomers due to (*E*)- and (*Z*)-enolato ligands as observed for *N*-bonded ruthenium² and rhenium³ enolates. The major: minor ratio for **1a** and **1b** at 23 °C was estimated as 4:1 and 3:1, respectively.


Treatment of **1b** with an equimolar amount of acrylonitrile in benzene in the absence of ethyl cyanoacetate at room temperature resulted in mono-Michael addition to the enolato ligand giving *trans*-[Fe(H){NCC(C₂H₄CN)CO₂Et}(depe)₂] (**3**) in 44% yield (Scheme 1).⁶ The ¹H and ³¹P{¹H} NMR spectra of **3** indicate the presence of two isomers (major:minor = 3:1 at 24 °C), probably due to (*E*)- and (*Z*)-isomerism of the enolato ligand. The ³¹P{¹H} NMR spectrum of the major species shows two singlets at δ 84.3(s) and 89.4(s) and the ¹H NMR spectrum shows two quintets at $\delta - 25.70$ and -25.61, suggesting that the hydrido and enolato ligands are *trans* to each other and all phosphorus atoms located in an equatorial plane. Methylene protons of the cyanoethyl group in **3** were observed as two multiplets at $\delta 2.4$ (m, 2 H) and 2.5 (m, 2 H), as confirmed by COSY and homo-decoupling experiments.

We also carried out the reaction of the analogous enolatoruthenium complex *trans*-[Ru(H)(NCCHCO₂Et)(dppe)₂]^{2a} (2) with acrylonitrile giving *trans*-[Ru(H){NCC(C₂H₄CN)-CO₂Et}(dppe)₂] (4) in quantitative yield.⁷ The NMR spectra of 4 also show the presence of two isomers in 1:1 ratio, where the cyanoethyl group appears as a couple of A₂B₂ patterns at δ 1.84 (t, 2 H, J = 6 Hz) and 2.43 (t, 2 H, J = 6 Hz), and δ 2.28 (t, 2 H, J = 6 Hz) and 2.50 (t, 2 H, J = 6 Hz) in the same intensities.

The formation of these adducts **3** and **4** was further confirmed by the following chemical reactions. Acidolysis of **3** and **4** by excess dry HCl released the mono-Michael product NCCH(C_2H_4CN)CO₂Et in 48% and quantitative yields, respectively [eqn. (2)].

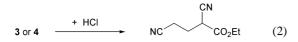
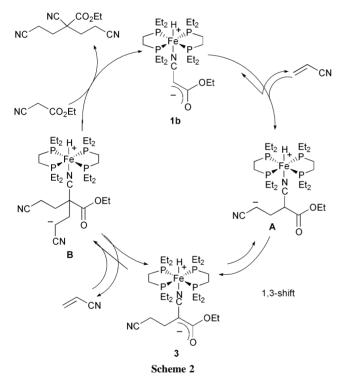


Fig. 1 Molecular structure of [Fe(H)(NCCHCO₂Et)(depe)₂] (**1b**). All hydrogen atoms except hydride and incorporated solvents are omitted for clarity. Ellipsoids represent 50% probability.

Scheme 1

[†] Electronic supplementary information (ESI) available: physical and spectroscopic data for 1a and 1b. See http://www.rsc.org/suppdata/cc/b0/ b0040991/


Reactions of NCCH(C_2H_4CN) CO_2Et^8 with [Fe(N_2)(depe)₂] and with [Ru(cod)(cot)]/dppe also gave **3** and **4** in 61 and 62% yields, respectively [eqns. (3) and (4)].

$$[Fe(N_2)(depe)_2] \xrightarrow{+ NCCH(C_2H_4CN)CO_2Et} 3 (3)$$

$$[Ru(cod)(cot)] \xrightarrow{+ \text{ } VCCH(C_2H_4CN)CO_2Et} 4 (4)$$

It is interesting to note that treatment of 3 (or 4) with excess of either acrylonitrile or ethyl cyanoacetate resulted in no reaction, even at 50 °C, whilst the 3 (or 4) catalysed double-Michael reaction of ethyl cyanoacetate with acrylonitrile exclusively gave ethyl 2,2-bis(cyanoethyl)cyanoacetate. Both enolate complexes 1b and the mono-Michael adduct 3 (1.0 mol%) smoothly catalysed this double-Michael addition at room temperature for 36 h in 88 and 79% yields, respectively.⁹ Similarly, complexes 2 and 4 also catalysed this reaction in 88 and 75% yields, respectively, under the same conditions.

By taking into account these facts, the possible reaction mechanism for the double-Michael reaction is illustrated in Scheme 2.

The N-bonded enolate complex 1b is nucleophilic enough to react with acrylonitrile to give A. The intermediate A rapidly converts to 3 by 1,3-proton migration. This process is probably driven by the high acidity of the methine proton in A and thermodynamic stability of the resulting $0x0-\pi$ -allyl structure in 3. This system exclusively affords the double-Michael product regardless of the amount of Michael acceptor and no trace of signals due to the mono-Michael product were detected by NMR. Thus, the direct formation of **1b** from **3** is negligible. Whereas compound **3** catalyses the double-Michael reaction, it remained unreacted with acrylonitrile or ethyl cyanoacetate. This fact suggests that the protonolysis of intermediate \mathbf{B} took place by ethyl cyanoacetate to reproduce 1b. When the isotopic labeled FeD(NCCDCO₂Et)(depe)₂ (1b-d₂) (45 atom% D for Fe–D) was employed in this reaction, the deuteride ligand in 1bd₂ remained intact during the catalytic Michael reaction of ethyl cyanoacetate with acrylonitrile (41 atom% D for Fe-D after TON = 3). This is good evidence for this double-Michael product being released from the catalyst, not by reductive elimination, but by protonation.

We are grateful to Proposal-based New Industry Creative Type Technology R&D Promotion Program from NEDO of Japan and the Ministry of Education, Science, Sports and Culture, Japan for financial support.

Notes and references

- (a) S.-I. Murahashi and H. Takaya, Acc. Chem. Res., 2000, 33, 225; (b)
 S. G. Alvalez, S. Hasegawa, M. Hirano and S. Komiya, Tetrahedron Lett., 1998, 39, 5209; (c) R. Kuwano, H. Miyazaki and Y. Ito, Chem. Commun., 1998, 71; (d) H. Bricout, J.-F. Carpentier and A. Mortreux, Chem. Commun., 1997, 1393; (e) E. Gômez-Bengoa, J. M. Cuerva, C. Mateo and A. M. Echavarren, J. Am. Chem. Soc., 1996, 118, 8553; (f) H. Sasai, S. Arai and M. Shibasaki, J. Org. Chem., 1994, 59, 2661; (g) D. A. Evans, J. L. Duffy and M. J. Dart, Tetrahedron Lett., 1994, 35, 8537; (h)
 Y. Lin, X. Zhu and M. Xiang, J. Organomet. Chem., 1993, 448, 215; (i)
 P. Veya, C. Floriani, A. Chiesi-Villa and C. Rizzoli, Organometallics, 1993, 12, 4892, 4899; (j) T. Naota, H. Taki, M. Mizuno and S.-I. Murahashi, J. Am. Chem. Soc., 1989, 111, 5954; (k) G. A. Slough, R. G. Bergman and C. H. Heathcock, J. Am. Chem. Soc., 1989, 111, 938 and references cited therein.
- 2 (a) M. Hirano, A. Takenaka, Y. Mizuho, M. Hiraoka and S. Komiya, J. Chem. Soc., Dalton Trans., 1999, 3209; (b) S.-I. Murahashi, T. Naota, H. Taki, M. Mizuno, H. Takaya, S. Komiya, Y. Mizuho, N. Oyasato, M. Hiraoka, M. Hirano and A. Fukuoka, J. Am. Chem. Soc., 1995, 117, 12436; (c) Y. Mizuho, N. Kasuga and S. Komiya, Chem. Lett., 1991, 2127.
- 3 (a) M. Hirano, M. Hirai, Y. Ito, T. Tsurumaki, A. Baba, A. Fukuoka and S. Komiya, J. Organomet. Chem., 1998, 569, 3; (b) M. Hirano, Y. Ito, M. Hirai, A. Fukuoka and S. Komiya, Chem. Lett., 1993, 2057.
- 4 (a) T. Morikita, M. Hirano, A. Sasaki and S. Komiya, *Inorg. Chim. Acta*, 1999, **291**, 341; (b) M. Hirano, M. Akita, T. Morikita, H. Kubo, A. Fukuoka and S. Komiya, *J. Chem. Soc., Dalton Trans.*, 1997, 3453; (c) M. Hirano, M. Akita, K. Tani, K. Kumagai, N. C. Kasuga, A. Fukuoka and S. Komiya, *Organometallics*, 1997, 4206; (d) S. Komiya, M. Akita, N. Kasuga, M. Hirano and A. Fukuoka, *J. Chem. Soc., Chem. Commun.*, 1994, 1115; (e) S. Komiya, M. Akita, A. Yoza, N. Kasuga, A. Fukuoka and Y. Kai, 1993, 787.
- 5 *Crystal data* for **1b**·Et₂O·H₂O: C₂₉H₆₇FeNO₄P₄ monoclinic, *C2/c* (No. 15), *a* = 32.31(2), *b* = 13.63(1), *c* = 17.54(1) Å, β = 111.68(4)°, *V* = 7179(8) Å³, *Z* = 8, *T* = -160.0 °C, *D*_{calc} = 1.246 g cm⁻³, Total reflections = 6421, Unique reflection = 6302, *F*₀₀₀ = 2928.00, μ = 6.30 cm⁻¹, *R*(*R*_w) = 0.054 (0.098). Goodness of Fit Indicator = 1.03. The hydride in **1b** was found in the differential Fourier map and was refined isotropically. CCDC 182/1729. See http://www.rsc.org/suppdata/cc/b0/b0040991/ for crystallographic files in .cif format.
- 6 Spectroscopic data for **3**: major isomer: ¹H NMR (300.4 MHz, C₆D₆): δ -25.70 (qnt, J = 46.5 Hz, 1 H, Fe-H), 0.75 (br, 12 H, PCH₂CH₃), 0.98 (sext, J = 7.2 Hz, 4 H, PCH₂CH₃), 1.00 (sext, J = 7.2 Hz, 4 H, PCH₂CH₃), 1.08 (br, 12 H, PCH₂CH₃), 1.27 (t, J = 7.5 Hz, 3 H, OCH₂CH₃), 1.59 (sext, J = 7.7 Hz, 4 H, PCH₂CH₃), 1.61 (sext, J = 8.1Hz, 4 H, PCH₂CH₃), 2.06 (sext, J = 8.1 Hz, 2 H, PC₂H₄P), 2.09 (sext, J = 7.7 Hz, 2 H, PC₂H₄P), 2.4 (m, 2 H, C₂H₄CN), 2.5 (m, 2 H, C₂H₄CN), 4.39 (q, J = 6.9 Hz, 2 H, OCH₂CH₃); ³¹P¹H} NMR (121.6 MHz, C₆D₆): δ 89.2; Minor isomer: ¹H NMR (300.4 MHz, C₆D₆); $\delta - 25.61$ (qnt, J = 46.8 Hz, 1 H, Fe-H), 4.26 (q, J = 6.3 Hz, 2 H, OCH₂CH₃); ³¹P¹H} NMR (121.6 MHz, C₆D₆): δ 89.4; IR (KBr, v/cm⁻¹): 2162 (vN≡C), 1831 (vFe-H), 1608 (vC=O); Anal. Calcd for C₂₈H₅₈FeN₂O₂P₄: C, 53.00; H, 9.21; N, 4.41%. Found: 53.75; H, 9.58; N, 5.56%.
- 7 Spectroscopic data for 4: compound 4 is insoluble in most of organic solvents such as methanol or dmso. However, the initial stage of the reaction in an NMR tube afforded the following NMR spectra: isomer A; ¹H NMR (300.4 MHz, C₆D₆): δ −16.44 (qnt, J = 19.6 Hz, 1 H, Ru-H), 1.44 (t, J = 7 Hz, 3 H, OCH₂CH₃), 1.84 (t, J = 6 Hz, 2 H, C₂H₄CN), 1.9–2.1 (br, 4 H, PC₂H₄P), 2.43 (t, J = 6 Hz, 2 H, C₂H₄CN), 2.5 (br, 2 H, C₂H₄CN), 4.58 (q, J = 6 Hz, 2 H, OCH₂CH₃), 6.8 (m, 12 H, *Ph*), 7.0 (m, 12 H, *Ph*), 7.1 (m, 8 H, *Ph*), 7.4 (m, 8 H, *Ph*); ³¹P{¹H} (121.6 MHz, C₆D₆): δ 58.9 or 62.3 (s); isomer B: ¹H NMR (300.4 MHz, C₆D₆): δ −16.29 (qnt, J = 18.3 Hz, 1 H, Ru-H), 1.46 (t, J = 6 Hz, 2 H, OCH₂CH₃), 2.28 (t, 2 H, J = 6 Hz, C₂H₄CN), 2.50 (t, 2 H, J = 6 Hz, C₂H₄CN), 4.6 (q, J = 6 Hz, 2 H, OCH₂CH₃); ³¹P{¹H} (121.6 MHz, C₆D₆): δ 62.3 or 58.9 (s); IR (KBr, v/cm⁻¹): 2165 (vN≡C), 1933 (vRu-H), 1621 (vC=O).
- 8 E. E. van Tamelen and E. E. Smissman, J. Am. Chem. Soc., 1953, 75, 2031.
- 9 *Conditions*: [ethyl cyanoacetate] = 0.81 M, [acrylonitrile] = 1.6 M, [catalyst] = 0.0081 M, solvent = thf (2.0 cm³), temp. = r.t., time = 36 h.